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Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities
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School of Information Engineering, Tongmyong University of Information Technology, Pusan 608-711, Republic of Korea
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The vortex method is applied to simulations of Rayleigh-Taylor~RT! and Richtmyer-Meshkov~RM! insta-
bilities. The numerical results from the vortex method agree well with analytic solutions and other numerical
results. The bubble velocity in the RT instability converges to a constant limit, and in the RM instability, the
bubble and spike have decaying growth rates, except for the spike of infinite density ratio. For both RT and RM
instabilities, bubbles attain constant asymptotic curvatures. It is found that, for the same density ratio, the RT
bubble has slightly larger asymptotic curvature than the RM bubble. The vortex sheet strength of the RM
interface has different behavior than that of the RT interface. We also examine the validity of theoretical
models by comparing the numerical results with theoretical predictions.
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I. INTRODUCTION

The instability of an accelerated interface between flu
of different densities is a fundamental problem in fluid d
namics. The Rayleigh-Taylor~RT! instability occurs at an
interface subject to gravitational acceleration@1# and the
Richtmyer-Meshkov~RM! instability is driven by impulsive
acceleration such as a shock wave@2#. Both instabilities play
important roles in many fields ranging from astrophysics
inertial confinement fusion and are subjects of intensive c
rent research.

Small perturbations at these unstable interfaces grow
nonlinear structures in the form of bubbles and spikes@3#. A
bubble~spike! is a portion of the light~heavy! fluid penetrat-
ing into the heavy~light! fluid. At later times, a bubble in the
RT instability attains a constant velocity, while a RM bubb
has a decaying growth rate. Eventually, a turbulent mix
caused by vortex structures around spikes breaks the ord
fluid motion.

The RT and RM instabilities have been numerically stu
ied by many people and various numerical methods h
been applied to computations of complex unstable interfa
@4–17#. In this paper, we present numerical simulations
nonlinear evolutions of RT and RM instabilities by the po
vortex method. In the point vortex method, the interface
considered as a set of point vortices and these vortices
computed in Lagrangian manner, without solving equatio
in whole two-dimensional grids@4,9#. This advantage of vor-
tex method provides highly accurate and reliable soluti
for unstable interfaces.

The numerical simulations for RT instability by the poi
vortex method were first performed by Bakeret al. @4#, and
later by Kerr @9#. Kerr used the formulation based on th
vortex dipole model. Tryggvason@7# and Zufiria@8# applied
a different type of vortex method, so called vortex-in-c
method, to the RT instability. Rikanatiet al. @15# reported the
numerical results for RM instability for the limit of two flu
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ids of same density ratio~Atwood numberA→0) from the
vortex model. In Ref.@15#, they used the reduced mod
which placed only two opposite vortices at the middle o
bubble and spike. To the author’s knowledge, the vor
methods have not been applied so far to the simulation
RM instability of finite density contrast. The main purpose
this paper is the numerical simulations for RT and RM ins
bilities from a full vortex model and the investigation o
various aspects of dynamics for unstable interfaces.

Potential flow models for unstable interfaces have be
recently developed by several authors@18–22# and analytic
solutions for bubbles and spikes are obtained. We comp
results from the vortex method with analytic solutions
potential flow models. The examination for the validity
potential flow models through quantitative comparisons
predictions from theoretical models with numerical results
also a key issue of this paper.

The point vortex method in our computations uses
formulation of the vortex model in Bakeret al. @4#. However,
the classical method in Ref.@4# has several difficulties in the
implementations, so that modifications to the classi
method are needed for stable computations. First of all,
vortex method in Ref.@4# suffers from the numerical insta
bility, due to singularity, as the number of point vortice
increases. From this reason, they focused mostly on the
nite density ratio case and the results for finite density ra
had low resolutions for the interfaces. To overcome the
merical instability from singularity, we adopt Krasny
method @23#, which regularizes point vortices as vortice
with finite cores or ‘‘blobs’’ of vortices. Krasny’s desingula
ization method makes the point vortex method stable
large number of point vortices, so that it provides high re
lutions of the interface. The additional difficulty is the deve
opment of steep profiles of vortex sheet strength at
times. To handle the shocklike behavior of vortex sh
strength, we apply the upwind~or, shock-capturing! method
to computations of the equation for vortex sheet strength

The vortex methods usually assume incompressible flo
while the RM instability occurs mostly in compressible fl
ids in reality. For compressible RM instability, the author a
coworker showed that the unstable system transits from
proximately linear and compressibility dominant stage
nonlinear and nearly incompressible stage@24#. Holmes
et al. @16# have further examined the nonlinear theory in R
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@24# and shown that the transition from linear compressi
to potential flow is valid for the small amplitude initializatio
and weak to moderate shock strength. Therefore, even
compressible RM instability, driven by a weak or modera
shock, the vortex methods are relevant for most of ti
ranges except the early linear stage.

In Sec. II, we present the vortex model for the evolutio
of stratified unstable interfaces and the numerical algorit
to solve the vortex model. The numerical results are p
sented in Sec. III for the RT instability and Sec. IV for th
RM instability. Section V discusses the results and gives c
clusion.

II. VORTEX METHOD

A. Vortex model

We consider an interface in a vertical channel filled w
two fluids of different densities in two dimensions. Fluids a
inviscid, incompressible, and irrotational, and the motion
fluids is governed by the Euler equation

ai52
1

r i
¹pi2gj , i 51,2, ~1!

wherea is the acceleration of a material particle,r density of
fluid, p pressure in the fluid,g the external acceleration, an
j a unit vector alongy axis. From the potential flow assump
tion, the interface can be modeled as a vortex sheet@25#. The
strength of vortex sheetg is defined as the jump in the tan
gential velocities of two fluids across the interface

g5~u12u2!•s. ~2!

Here,u1 andu2 are velocities below and above the interfac
respectively, ands is the unit tangent vector at the interfac

The Lagrangian velocity of interface is expressed by

q5U1 1
2 gas, ~3!

whereU represents the average of velocities on either si

U5 1
2 ~u11u2!, ~4!

anda, uau<1, is the weighting parameter. Takinga51, the
vortices follow the lower fluid and, takinga521, the vor-
tices follow the upper fluid.

Since the interface velocity is a weighted average of fl
velocities at the interface, the parametera in Eq. ~3! indi-
rectly determines the distribution of vortices along the int
face. If the resolution of the interface is good overall, t
results are independent ofa. However, if the vortices are
strongly clustered and the arclength of the interface is rap
elongated in some regions, the results depend ona and the
appropriate choice ofa allows the computations to procee
to much longer time. The issue of choosing the numer
parametera will be discussed later.

The interface is described by a parametric curvex
5x(s,t), with the arclengths and timet, and is evolved by
03670
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dx

dt
5q. ~5!

The average velocityU is given by the Biot-Savart law

U~s,t !5
1

2pE2`

` k3@x~s,t !2x~ s̃,t !#

ux~s,t !2x~ s̃,t !u2
g~ s̃,t !ds̃, ~6!

where the principal value integral is taken along the sh
andk is the unit vector normal to the two-dimensional pla
for the fluid system. For the periodic boundary conditi
with period 2p, the Biot-Savart law~6! reduces to

u2 iv5
1

4p iE0

2p

g̃ cotS z2 z̃

2
D ds̃. ~7!

Here,u and v represent the horizontal and vertical comp
nents of the average velocityU, and z5x1 iy in complex
notation, andg̃5g( s̃), z5z(s), z̃5z( s̃).

An alternative way to the Biot-Savart law is the vorte
in-cell method@7,8#, which evaluates the velocity field b
solving the Poisson equation for the stream function in
whole domain. Note that the vortex-in-cell method has
smoothing for solutions by grid effects. The vortex meth
used in our study has a similar smoothing effect as
vortex-in-cell method when the regularization parameter
applied.

To determine the average velocity by Eq.~7!, the evolu-
tion equation for the vortex sheet strengthg is needed. The
accelerationai has the following kinematic relation:

ai5
dui

dt
2 1

2 g~a61!
]ui

]s
, ~8!

where the1(2) sign is fori 52(1). Subtracting the tangen
tial component of Euler equations~1! of each fluid and using
Eq. ~8!, we have

~a12a2!•s5A~a11a2!•s12Agj•s ~9!

5AS 2
dU

dt
•s1

1

4

]g2

]s
2ga

]U

]s
•sD

12Agj•s, ~10!

whereA5(r22r1)/(r21r1) is the Atwood number. Then
by the relation~8!, Eq. ~10! becomes

dg

dt
52A

dU

dt
•s1

]

]s S a1A

4
g212AgyD2~11aA!g

]U

]s
•s.

~11!

The Eqs.~5!, ~7!, and~11! determine the evolution of vortex
sheet between stratified fluids. Note that Eq.~11! is actually
an integro-differential equation forg, sinceU is coupled to
g by Eq. ~7!.

The external accelerationg is set to a constant for the
Rayleigh-Taylor instability and 0 for the Richtmye
3-2
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VORTEX MODEL AND SIMULATIONS FOR RAYLEIGH- . . . PHYSICAL REVIEW E 69, 036703 ~2004!
Meshkov instability. The Richtmyer-Meshkov interface
evolved by giving the initial velocity, which in turn is th
approximation of the interface state resulting from the int
action of an incident shock wave and the interface.

B. Numerical method

The RT-type instability develops a singularity due to t
roll-up around the spike and this produces a difficulty
numerical computations. To overcome this, we apply a de
gularization parameterd.0 to Eq. ~7! @23#. The ‘‘d equa-
tions’’ for Eq. ~7! are

u52
1

4pE0

2p sinh~y2 ỹ!

cosh~y2 ỹ!2cos~x2 x̃!1d2
g̃ ds̃, ~12!

v5
1

4pE0

2p sin~x2 x̃!

cosh~y2 ỹ!2cos~x2 x̃!1d2
g̃ ds̃. ~13!

To solve the system of equations numerically, we discre
the interface$xi% i 50

N and the vortex sheet strength$g i% i 50
N

where N is the number of point vortices. Given$xi% and
$g i%, the velocity field can be evaluated from Eqs.~3!, ~12!,
and ~13!. Applying direct summations for the integral, Eq
~12! and ~13! are approximated by

ui52
1

4p (
j Þ i

G j

sinh~yi2yj !

cosh~yi2yj !2cos~xi2xj !1d2
,

~14!

v i5
1

4p (
j Þ i

G j

sin~xi2xj !

cosh~yi2yj !2cos~xi2xj !1d2
. ~15!

Here,G i represents the local circulation, defined as

G i5g i Dsi , ~16!

whereDsi is the segment of arclength,

Dsi5
1
2 A~xi 112xi 21!21~yi 112yi 21!2.

The interface position and vortex sheet strength in ti
are determined by Eqs.~5! and ~11!–~13!. For time integra-
tions of these coupled equations, we apply an iterat
method. The numerical procedures of time integrations
described as follows: Assuming that the discrete positionxi

n ,
the average velocityUi

n and the vortex sheet strengthg i
n are

given at current time stepn, we first estimatedg i
n/dt by Eq.

~11! with dUi
n21/dt at previous time step. Then, we upda

g i
n11 and advance the interface by Eq.~5! with Eq. ~3!, by

suitable time stepping methods. Using the updated values
the interface position and vortex sheet strength, the velo
field at next time step,Ui

n11 , is evaluated from Eqs.~14! and
~15!. Then, we can compute the new estimate fordUi

n/dt by
the central difference with respect to time, i.e.,
03670
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n

dt
5

Ui
n112Ui

n21

2Dt
. ~17!

Initially, dUi
n/dt is updated by the forward difference

dUi
n/dt5(Ui

n112Ui
n)/Dt. This iteration procedure is re

peated until convergence. In our computations, six iterati
are needed, on average, to achieve convergence for g
tolerance 1028. Note that, for the integration of time step
ping, the trapezoidal method is applied for the interface a
Euler’s method for the vortex sheet strength.

In the computation of Eq.~11!, we apply central differ-
ences fors,]y/]s and]U/]s. However, the discretization o
the term ing2 in Eq. ~11! should be carefully taken. As time
proceeds, the vortex sheet strength develops a complic
structure and becomes very steep around the center of ro
at the spike. This shocklike behavior of vortex sheet stren
is due to the term ing2, because this term makes Eq.~11! a
type of Burgers equation. Discretizations based on cen
difference for]g2/]s are numerically unstable and the com
putations stop when the profile becomes steep.

The similarity of Eq.~11! to Burgers equation sugges
the use of the upwind method@26# for the termg2. Here, we
apply the Godunov method, which is the simplest upwi
method. The Godunov method approximates the termF
52g2 at the midpoints between vortices by

Fi 11/25max@~g i
1!2, ~g i 11

2 !2#, ~18!

where

g15max~2g,0!, g25min~2g,0!. ~19!

This formulation based on the upwind difference provid
stable computations for Eq.~11!, so that it runs much longe
time than methods based on central differences. Note tha
upwind method was first applied to the computation of v
tex sheet by Zufiria@8#.

It has been found that point vortices on the interface te
to migrate away from the spike region toward the bubble,
that the spike is poorly resolved at late times. In our com
tations, the nonuniform distribution of point vortices is co
trolled by the weighting parametera in Eq. ~3!. As men-
tioned earlier, the parametera indirectly determines the
distribution of vortices along the interface, without changi
the solution itself. We have found that the choicea52A2 is
effective for our simulations and gives good resolution
the interface. This choice ofa was also used by Kerr@9# for
the computation of Rayleigh-Taylor instability by the meth
based on vortex dipole model.

C. Initial conditions

To apply the described numerical algorithm to unsta
interfaces, the position and the vortex sheet strength of
vortex points should be given initially. In this paper, we f
cus on the evolutions of initial sinusoidal interface in t
channel of width 2p,

z5a0cos~x!. ~20!

For the Rayleigh-Taylor instability,g i50 for all vortex
points, assuming that the initial velocity of the interface is
3-3
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FIG. 1. Evolutions of RT insta-
bility. Atwood numbers are~a! A
50.05, ~b! A50.3, ~c! A50.7.
Times are~a! t50, 10, 14, 18, 22,
~b! t50, 5, 6, 7, 8,~c! t50, 2, 3,
4, 5.
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For the Richtmyer-Meshkov instability, the initial cond
tion for vortex sheet strength can be obtained from the t
oretical model. We take the velocity potential ansatz

f15n0eycosx, f252n0e2ycosx ~21!

for lower and upper fluid, respectively. The velocity potent
ansatz~21! comes from the Richtmyer impulsive model@2#
and is typically used in the modeling of RM instabilit
@24,27#. From this velocity potential ansatz, the initial co
dition for local circulations in RM instability is given by

G i52n0~xi 112xi 21!sinxi coshyi . ~22!

The vortex sheet strengths are determined from Eq.~16!.
The initial velocity along vortex points is given by Eq

~14! and~15!. If the parameterd is 0, n0 in Eq. ~22! defines
the initial velocity of the RM bubble and spike. In our com
putations,d.0 is used for finite density ratio cases, so th
the initial velocity of the bubble and spike is smaller thann0.
03670
-

l

t

For infinite density ratio case, we used50, because the
interface ofA51 has a smooth profile without roll-up and
regularization is not needed.

III. RESULTS FOR RAYLEIGH-TAYLOR INSTABILITY

We apply the described numerical algorithm of the vort
method and perform numerical experiments for the nonlin
evolutions of Rayleigh-Taylor instability. For all computa
tions, the gravitational acceleration is set tog51 and the
number of vortex pointsN5400.

All results in this section are plotted in dimensionle
units. The dimensionless length, time, and velocity are giv
by kx, tAkg, and UAk/g, respectively, wherek52p/L is
the wave number andL is the channel width.

Figure 1 illustrates the results for evolutions of RT u
stable interfaces for chosen Atwood numbers,A50.05, 0.3,
and 0.7~density ratios 1:1.105, 1:1.857, and 1:5.667, resp
tively!. The initial amplitude of perturbed interface isa0
50.5. The computational time steps areDt50.002 for A
50.05, andDt50.001 forA50.3 and 0.7. The regulariza
3-4
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FIG. 2. Evolution of RT insta-
bility for A51. Times aret50, 2,
3, 4, and 5.
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tion parameter is set tod50.15. We see from Fig. 1 that th
spike has stronger roll-up for smaller Atwood number a
the difference of amplitudes of the bubble and spike at
times becomes large as the Atwood number increases.

The result for the case of infinite density ratio,A51, is
displayed in Fig. 2. The regularization parameter is set td
50, for the reason mentioned previously. The initial amp
tude of interface isa050.5 and the time stepDt50.001.

Figure 3 plots the bubble and spike velocities for the
sults of Figs. 1 and 2. For comparisons, theoretical pre
tions for the asymptotic bubble velocity from the potent
flow model@21# are also shown by dashed lines. The auth
@21# has recently generalized Layzer’s potential flow mo
@28#, originally for infinite density ratio, to the system o
arbitrary density ratio and obtained the analytic solution
the asymptotic velocity and curvature of the RT bubble,

nbb→A Ag

~21A!k
, ujbbu→

k

3
. ~23!
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Figure 3 shows that the numerical results for the bubble
locity agree well with the analytic solution~23!.

To show the dependence of the regularization param
d, we compare the results for various values ofd. Figure 4
shows the bubble and spike velocities ford50.1, 0.15, and
0.2 for the system ofA50.3. Figure 4 shows that the veloc
ity field grows slightly faster for smaller value ofd, but
converges to quantitatively similar values. The computatio
with d50.1 are stopped aroundt57.3 due to lack of resolu-
tion. Figure 5 is the comparison of RT unstable interfaces
A50.3 for d50.1, 0.15, and 0.2 at timet57. We see that
the resolution of the spike is refined asd decreases and th
amplitudes of the bubble and spike are slightly larger
smaller value ofd.

Figure 6 is the bubble curvatures forA50.05, 0.3, 0.7,
and 1.0 with initial amplitudesa050.3 and 0.5. In Fig. 6, the
sign of the bubble curvature is changed for plot. The bub
curvatures converge to values between 0.5 and 0.55, for
ting initial amplitudes. The asymptotic bubble curvatures
-

e
d
s

FIG. 3. Bubble and spike ve
locities of RT instability for A
50.05, 0.3, 0.7, and 1.0. The
solid curves are results from th
vortex method and the dashe
lines are theoretical prediction
for asymptotic bubble velocity
from the potential flow model.
3-5
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SUNG-IK SOHN PHYSICAL REVIEW E69, 036703 ~2004!
A50.3 and 0.7 are larger than that forA50.05 andA51.
Therefore, it seems that the asymptotic bubble curvatur
not monotonic with respect to the Atwood number.

The theoretical prediction~23! from the Layzer-type po-
tential flow model gives 1/3 for the asymptotic bubble cu
vature in this case, which has a range of difference from 3
to 40% with the numerical results. The reason for this re
tively large difference is that the analytic solution~23! is
derived from the approximate modeling and the curvatur
a much more sensitive parameter than the velocity. The
dictions from the theoretical model can be improved by p
viding more appropriate form of potential to the mod
Zufiria @29# proposed a different potential flow model, appl

FIG. 4. Comparison of bubble and spike velocities of RT ins
bility for various values of regularization parameterd. The Atwood
number isA50.3. The dashed curve corresponds tod50.1, the
solid curve tod50.15, and the dotted curve tod50.2.
03670
is

-
%
-

is
e-
-
.

ing a potential with singularity. Note that Layzer’s mod
uses an analytic potential. The asymptotic solution for the
bubble in Zufiria’s model is

nbb→0.963A g

3k
, ujbbu→

k

A3
, ~24!

which is given by Sohn and Zhang@19#. The solution~24! is
valid only for A51 and Zufiria’s model still has not bee
extended to generalA,1. The solution~24! predicts 0.577
for the asymptotic bubble curvature in this case, which h
about 15% difference with the numerical result forA51.
The prediction for the asymptotic bubble velocity from E
~24! has little difference with that from Layzer’s model o
numerical results.

Figure 7 is the distribution of vortex sheet strengths alo
the RT interfaces for the results of Figs. 1 and 2 at selec

-

FIG. 5. Comparison of evolutions of RT unstable interfaces
various values of regularization parameterd at time t57. The At-
wood number isA50.3 and the number of vortex points isN
5400. ~a! d50.1, ~b! d50.15, ~c! d50.2.
f
FIG. 6. Bubble curvatures o
RT instability with initial ampli-
tudes a050.3 and 0.5. Atwood
numbers are~a! A50.05, ~b! A
50.3, ~c! A50.7, ~d! A51.
3-6
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FIG. 7. Distributions of vortex
sheet strengths along RT inte
faces. Atwood numbers are~a! A
50.05, ~b! A50.3, ~c! A50.7,
~d! A51.
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times. Thex axis represents the normalized arclength.
observe that the vortex sheet strength tends to be na
around the time of formation of spike and has more com
cated structure at late times for smaller value of Atwo
number. The vortex sheet strength forA50.05 is almost
symmetric with respect to vortex peaks, due to weak den
stratification of the system. Note that the vortex sh
strength for the system ofA50 is symmetric with respect to
vortex peaks@7#. Figure 7~d! shows that the vortex shee
strength forA51 becomes single shocklike profile at la
times.

IV. RESULTS FOR RICHTMYER-MESHKOV INSTABILITY

In this section, we present the numerical results
Richtmyer-Meshkov instability from the vortex method. Th
number of vortex points is set toN5400 for all computa-
tions, except results for finer vortices in Fig. 10.

For RM instability, we choose units typically used
shock-tube experiments@30#. The units can be rescaled b
U→s1U, x→s2x, t→(s2 /s1)t.

Figure 8 illustrates the results for evolutions of RM u
stable interfaces for finite density ratio cases. We choose
Atwood numbers,A50, 0.3, and 0.7. The initial amplitud
is a050.5 cm and the initial velocity of the bubble and spi
is 0.8 cm/ms, by settingn051 cm/ms in Eq.~22! and d
50.15. The computational time steps areDt50.001 ms for
all cases. Figure 8 shows that, similarly as the RT instabi
the RM interface has stronger roll-up for smaller Atwo
number. We also observe that, for smaller Atwood numb
the amplitude of the RM bubble is larger at later times a
that of the RM spike is smaller.
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The result for the case of infinite density ratio,A51, is
displayed in Fig. 9. The regularization parameter is set td
50. The initial amplitude of the interface isa050.5 cm and
the initial interface velocity is 0.8 cm/ms, directly settin
n050.8 cm/ms in Eq.~22!. The computational time step i
taken asDt50.0005 ms.

We validate the present method by comparing our res
with other numerical results. Figure 10 shows the comp
son of results from the vortex method for bubble and sp
velocities with the results obtained by Menikoff and Zema
@5#. Menikoff and Zemach applied the method of conform
mapping for the RT instability and, to extend the model
the RM instability, setg50 and gave nonzero initial velocity
for the interface, which is the same approach as given in
paper. In both results, the same initial conditions,a050 ~flat
interface! andn050.5 cm/ms, are used. The solid curves a
the results from the vortex method and the circles from
method of conformal mapping in Ref.@5#. We performed
simulations using finer vortices,N5200, 400, and 800. We
see the convergence of our results to the spike velocity
tained by the conformal mapping and perfect agreements
the bubble velocity. The results from the vortex method
the bubble velocity are identical for all cases. Note that
comparison of results for the RT instability from the poi
vortex method and the method of conformal mapping
given in Bakeret al. @4#.

The bubble and spike velocities for the results of Figs
and 9 are plotted in Fig. 11. The velocities of bubbles a
spikes decay to zero for all cases, except the spike oA
51. For smaller Atwood number, the growth rate of t
bubble is larger, while that of the spike is smaller. T
dashed curves in Fig. 11~a! are theoretical predictions fo
3-7
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FIG. 8. Evolutions of RM in-
stability. Atwood numbers are~a!
A50, ~b! A50.3, ~c! A50.7.
The initial interface velocity is 0.8
cm/ms. Times aret50, 2, 4, 5.5,
and 7 ms for each case. The do
main is @0,2p#3@25,5# cm2.
po

fi
ig

ke
d
f

l

asymptotic growth rates of bubbles from the Layzer-type
tential flow model@21#. The asymptotic solution for the RM
bubble in Ref.@21# is

nbb;
2

~21A!kt
, ujbbu→

k

3
. ~25!

For all cases, the numerical results for the bubble velocity
well with the theoretical prediction. The dashed line in F
03670
-

t
.

11~b! is the theoretical prediction for the asymptotic spi
velocity for A51 from the Layzer model, which is obtaine
by Zhang@18#. The asymptotic solution for the RM spike o
A51 in Zhang@18# is

nsp→n0S 3j013

3j011D 1/2

, jsp→`, ~26!

wherej05j(t50). Figure 11~b! shows that the numerica
FIG. 9. Evolution of RM insta-
bility for A51. The initial inter-
face velocity is 0.8 cm/ms. Times
are t50, 1, 2, 3, and 4 ms. The
domain is@0,2p#3@25,5# cm2.
3-8
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VORTEX MODEL AND SIMULATIONS FOR RAYLEIGH- . . . PHYSICAL REVIEW E 69, 036703 ~2004!
result for the spike velocity is in good agreement with t
analytic solution. For the case of Fig. 10~flat interface!, the
solution ~26! gives 0.866 cm/ms, which is in reasonab
agreement with the numerical results.

Figure 12 shows the bubble curvatures for the results
Figs. 8 and 9, and the results with the initial amplitudea0
50.3 cm. The bubble curvatures converge to values betw
0.45 and 0.5 cm21, independent of initial amplitudes. W
again do not find a monotone behavior of the asympto
bubble curvature with respect to the Atwood number. It
interesting to compare the results of RM bubble curvatu
with the RT cases. For the same Atwood number,
asymptotic curvature of the RM bubble is slightly smal
than that of the RT bubble.

The asymptotic curvature~25! for the RM bubble from
Layzer’s model is same as that for the RT bubble and ha
range of difference from 27% to 34% with the numeric
results. On the other hand, the asymptotic solution for
RM bubble ofA51 from Zufiria’s model@19# is

nbb;
0.6

kt
, ujbbu→

k

2.61
. ~27!

In Zufiria’s model, the RT bubble has larger asymptotic c
vature than the RM bubble. This behavior for the bub

FIG. 10. Comparison of present results with other numer
results for A51. The solid curves are results from the vort
method withN5200, 400, and 800. The circles correspond to r
sults from the method of conformal mapping in Ref.@5#. The initial
conditions area050 ~flat interface! andn050.5 cm/ms.
03670
f

en

c
s
s
e

a
l
e

-
e

curvature in Zufiria’s model is consistent with the numeric
results. The solution~27! gives 0.383 cm21 for the
asymptotic bubble curvature in our case, which has ab
15% difference with the numerical result forA51 and is in
better agreement with the numerical result than Layze
model. The prediction for the asymptotic bubble veloc
from the solution ~27! is slightly lower than that from
Layzer’s model and also fits better with the numerical res

Figure 13 plots the vortex sheet strengths along the
interfaces for the results of Figs. 8 and 9 at selected tim
The vortex sheet strength of the RM unstable interface
A50 is symmetric with respect to vortex peaks and is co
centrated at midpoints of the bubble and spike. The struc
of vortex sheet strength for the RM interface ofA50 is
much simpler than that of weakly stratified RT instability
Fig. 7~a!. The single shocklike behavior of vortex she
strength forA51 in Fig. 13~d! is similar to the RT case o
A51 in Fig. 7~d!. However, the peak of vortex shee
strength for the RM instability ofA51 does not increase
with respect to time, unlike the RT case ofA51.

We mentioned in Sec. I that Rikanatiet al. @15# used the
reduced vortex model forA50 which gave only two oppo-
site vortices at the middle of the bubble and spike. The c
centration of the vortex sheet strength at midpoints of
bubble and spike, in Fig. 13~a!, shows that the assumptio
used in Ref.@15# is indeed reasonable. Moreover, this beha
ior supports the agreement of the analytic solution
asymptotic bubble velocity forA50 from the reduced vortex
model @Eq. ~7! in Ref. @15## and the solution~25! from the
potential flow model.

V. DISCUSSION AND CONCLUSIONS

We have presented the numerical simulations for RT a
RM instabilities by the vortex method. The numerical resu
show that the vortex method has been successfully applie
the nonlinear evolutions of unstable interfaces.

The point vortex method used in our computations h
provided highly resolved solutions for unstable interfac
The regularization parameterd is applied for stable compu
tations and, for smaller value ofd, the roll up of the spike is
refined. The computations with very smalld have serious
troubles at late times and we showed that the magnituded
has small effect on the solutions of physical variables.

The dynamics of unstable interfaces have been thoroug

l

-

s

n

f

FIG. 11. Bubble and spike ve
locities of RM instability for At-
wood numbersA50, 0.3, 0.7, and
1. The dashed curves in~a! are the
theoretical predictions for the
asymptotic growth rate of bubble
for A50, 0.3, 0.7, and 1 from
above to below. The dashed line i
~b! is the theoretical prediction for
the asymptotic spike velocity o
A51.
3-9
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FIG. 12. Bubble curvatures o
RM instability with initial ampli-
tudesa050.3 and 0.5 cm. Atwood
numbers are~a! A50, ~b! A
50.3, ~c! A50.7, ~d! A51.
an
lu
n
t-
nd

nd
of

ng
is
investigated by the vortex method. The results for bubble
spike velocities quantitatively agree with the analytic so
tions of potential flow models. The RT bubble attains a co
stant asymptotic velocity, which is proportional to the A
wood number for fixed gravitational acceleration a
03670
d
-
-

geometric parameters. In the RM instability, the bubble a
spike have decaying growth rates, except that the spike
A51 converges to a constant asymptotic velocity. Fixi
physical parameters, the growth rate of the RM bubble
larger for smaller Atwood number, while that of the RM
-

FIG. 13. Distributions of vor-

tex sheet strengths along RM in
terfaces. Atwood numbers are~a!
A50, ~b! A50.3, ~c! A50.7, ~d!
A51.
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VORTEX MODEL AND SIMULATIONS FOR RAYLEIGH- . . . PHYSICAL REVIEW E 69, 036703 ~2004!
spike is smaller.
The RT and RM bubbles have constant asymptotic cur

tures, independent of initial amplitudes. We have found th
for the same Atwood number, the RT bubble has sligh
larger asymptotic curvature than the RM bubble.
seems that, for both RT and RM instabilities, the asympto
bubble curvature is not monotonic with respect to t
Atwood number.

The studies on bubble curvatures have raised the issu
validity of theoretical models. The predictions for asympto
bubble curvatures, as well as asymptotic bubble velocit
from Zufiria’s potential flow model agree better with the n
merical results than Layzer’s model. The quantitative diff
ences between two models for predictions for solutions co
from the choice of potential function in the models. T
Layzer model uses a sinusoidal form of potential and
Zufiria model has more sophisticated potential which is
rived from complex conformal mapping. Therefore, one m
conclude that the Zufiria model is more appropriate for u
stable interfaces than the Layzer model. The advantag
Layzer’s model is in the simple form of potential, so that
has been generalized to the system of arbitrary density r
in several ways. The Zufiria model is still limited to the ca
of infinite density ratio and its extension to general cases
not been established yet.

The numerical results show that the vortex sheet stren
of RT and RM interfaces have different behaviors. In the
,

03670
-
t,
y
t
c
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-
e

e
-

y
-
of

tio

as

hs

instability, the vortex sheet strength has more complex str
tures as the Atwood number decreases. For the RM insta
ity of A50, the concentration of vortex strength on th
middle of the bubble and spike indicates that the redu
modeling, imposing only two vortices of different sign, is
reasonable approximation to the full model. The vortex sh
strength for the RM interface ofA51 becomes a single
shocklike profile, but the peak of vortex strength does
grow at late times.

The vortex simulation for the turbulent mixing by initia
multimode interactions is an interesting subject. For com
tations of fully developed or strongly interacting interface
the lack of resolution from nonuniform distribution of vorte
points causes a serious loss of accuracy. Therefore, it sh
be handled by auxiliary procedures such as a redistribu
or point insertion method. The application of the vort
method with a redistribution and/or point insertion procedu
to fully developed interfaces and simulations of turbule
mixings of RT and RM instabilities are under the curre
research.
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