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Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities
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The vortex method is applied to simulations of Rayleigh-TayRF) and Richtmyer-Meshko({RM) insta-

bilities. The numerical results from the vortex method agree well with analytic solutions and other numerical
results. The bubble velocity in the RT instability converges to a constant limit, and in the RM instability, the
bubble and spike have decaying growth rates, except for the spike of infinite density ratio. For both RT and RM
instabilities, bubbles attain constant asymptotic curvatures. It is found that, for the same density ratio, the RT
bubble has slightly larger asymptotic curvature than the RM bubble. The vortex sheet strength of the RM
interface has different behavior than that of the RT interface. We also examine the validity of theoretical
models by comparing the numerical results with theoretical predictions.
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[. INTRODUCTION ids of same density ratiGAtwood numberA—0) from the
vortex model. In Ref[15], they used the reduced model
The instability of an accelerated interface between fluidgvhich placed only two opposite vortices at the middle of a
of different densities is a fundamental problem in fluid dy-Pubble and spike. To the author's knowledge, the vortex
namics. The Rayleigh-TaylofRT) instability occurs at an Methods have not been applied so far to the simulations of
interface subject to gravitational acceleratifj and the <M instability of finite density contrast. The main purpose of
Richtmyer-MeshkoyRM) instability is driven by impulsive this paper is the numerical simulations for RT and RM insta-

. . bilities from a full vortex model and the investigation of
acceleration such as a shock wa2¢ Both instabilities play various aspects of dynamics for unstable interfac%.s.

Important ro_les In many fields ranging from as.trophy.sms 0" “potential flow models for unstable interfaces have been
inertial confinement fusion and are subjects of intensive Curfecently developed by several authgt8—22 and analytic
rent research. , __solutions for bubbles and spikes are obtained. We compare
Small perturbations at these unstable interfaces grow intgaqits from the vortex method with analytic solutions of
nonlinear structures in the form of bubbles and spl&dsA  potential flow models. The examination for the validity of
bubble(spike) is a portion of the lightheavy fluid penetrat-  potential flow models through quantitative comparisons of
ing into the heavylight) fluid. At later times, a bubble in the predictions from theoretical models with numerical results is
RT instability attains a constant velocity, while a RM bubble a|so a key issue of this paper.
has a decaying growth rate. Eventually, a turbulent mixing The point vortex method in our computations uses the
caused by vortex structures around spikes breaks the order&srmulation of the vortex model in Baket al.[4]. However,
fluid motion. the classical method in Rg#] has several difficulties in the
The RT and RM instabilities have been numerically stud-implementations, so that modifications to the classical
ied by many people and various numerical methods havenethod are needed for stable computations. First of all, the
been applied to computations of complex unstable interfacegortex method in Ref[4] suffers from the numerical insta-
[4-17]. In this paper, we present numerical simulations forbility, due to singularity, as the number of point vortices
nonlinear evolutions of RT and RM instabilities by the point increases. From this reason, they focused mostly on the infi-
vortex method. In the point vortex method, the interface igite density ratio case and the results for finite density ratios
considered as a set of point vortices and these vortices af@d low resolutions for the interfaces. To overcome the nu-
computed in Lagrangian manner, without solving equationd€rical instability from singularity, we adopt Krasny's
in whole two-dimensional gridgt,9]. This advantage of vor- method [23], which regularizes point vortices as vortices

tex method provides highly accurate and reliable solutioneYV'th finite cores or “blobs” of vortices. Krasny's desingular-
for unstable interfaces. ization method makes the point vortex method stable for

The numerical simulations for RT instability by the point large number of point vortices, so that it provides high reso-

vortex method were first performed by Bateral. [4], and lutions of the interface. The additional difficulty is the devel-
. CL opment of steep profiles of vortex sheet strength at late
later by Kerr[9]. Kerr used the formulation based on the b b prot vortex g

. - . times. To handle the shocklike behavior of vortex sheet
vortex dipole model. TryggvasdiT| and Zufiria[8] apph_ed strength, we apply the upwin@r, shock-capturingmethod
a different type of vortex method, so called vortex-in-cell to computations of the equation for vortex sheet strength.
method, to the RT instability. Rikanadt al.[15] reported the The vortex methods usually assume incompressible flows,
numerical results for RM InStablllty for the limit of two flu- while the RM |nstab|||ty occurs mosﬂy in Compressib|e flu-
ids in reality. For compressible RM instability, the author and
coworker showed that the unstable system transits from ap-
*Present address: Department of Mathematics, Kangnungroximately linear and compressibility dominant stage to
National University, Kangnung 210-702, Republic of Korea. Elec-nonlinear and nearly incompressible stafg]. Holmes
tronic address: sohnsi@kangnung.ac.kr et al.[16] have further examined the nonlinear theory in Ref.
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[24] and shown that the transition from linear compressible dx
to potential flow is valid for the small amplitude initialization T 5)
and weak to moderate shock strength. Therefore, even for

compressible RM instability, driven by a weak or moderateyp,o average velocity is given by the Biot-Savart law
shock, the vortex methods are relevant for most of time

ranges except the early linear stage. 1 (= kX[x(s,)—x(3,0)]
In Sec. II, we present the vortex model for the evolutions U(s,t)==— A ’2 y(s,t)ds,  (6)
of stratified unstable interfaces and the numerical algorithm 27— |x(s,t) = X(s,1)|

to solve the vortex model. The numerical results are pre- o ) .
sented in Sec. Il for the RT instability and Sec. IV for the Where the principal value integral is taken along the sheet

RM instability. Section V discusses the results and gives con@ndk is the unit vector normal to the two-dimensional plane
clusion. for the fluid system. For the periodic boundary condition

with period 2, the Biot-Savart law(6) reduces to

Il. VORTEX METHOD ~
) 1 [2n. z—7| ~
A. Vortex model U=z, YN 2 ds. @
We consider an interface in a vertical channel filled with _ _
two fluids of different densities in two dimensions. Fluids areHere, u andv represent the horizontal and vertical compo-
inviscid, incompressible, and irrotational, and the motion ofnents of the average velocity, andz=x+iy in complex

fluids is governed by the Euler equation notation, andy= y(s), z=z(s), z=z(5s).
An alternative way to the Biot-Savart law is the vortex-
a=— in-—gj i—12 1) in-cell method[7,8], which evaluates the velocity field by
pi ' " solving the Poisson equation for the stream function in the

whole domain. Note that the vortex-in-cell method has a
wherea is the acceleration of a material partictedensity of ~ smoothing for solutions by grid effects. The vortex method
fluid, p pressure in the fluidy the external acceleration, and used in our study has a similar smoothing effect as the
j a unit vector along axis. From the potential flow assump- vortex-in-cell method when the regularization parameter is
tion, the interface can be modeled as a vortex sf@gt The  applied.
strength of vortex sheet is defined as the jump in the tan-  To determine the average velocity by E@), the evolu-
gential velocities of two fluids across the interface tion equation for the vortex sheet strengths needed. The

acceleratiorg; has the following kinematic relation:

y=(U1—Uy)-s. 2
dUi
Here,u; andu, are velocities below and above the interface, & dt
respectively, and is the unit tangent vector at the interface.

The Lagrangian velocity of interface is expressed by ~ Where the+(—) sign is fori=2(1). Subtracting the tangen-
tial component of Euler equation$) of each fluid and using

3) Eq. (8), we have

1 1 au;
27(a— ) (95,

®

q=U+3yas,

o . . a;—ay)-S=A(a;t+ay)-st+2Agj-s 9
whereU represents the average of velocities on either side, (81~ 2) (31+3) 9 ©

du 1 92 U
U=3(u;+uy), 4 = — 5t — — ya—-
LUyt uy) @ Ao st 3 Ty s)
anda, |a|<1, is the weighting parameter. Takiag=1, the +2Agj-s, (10)
vortices follow the lower fluid and, taking=—1, the vor-
tices follow the upper fluid. where A= (p,—p1)/(ps+p1) is the Atwood number. Then,

Since the interface velocity is a weighted average of fluidby the relation(8), Eq. (10) becomes
velocities at the interface, the parameteiin Eq. (3) indi-

rectly determines the distribution of vortices along the inter-dy du J[atA oU
face. If the resolution of the interface is good overall, the gy ~ 2A gt St 75| 2 ¥ +2A0Y| ~(1+aA)y—=-s.
results are independent af. However, if the vortices are (11)

strongly clustered and the arclength of the interface is rapidly
elongated in some regions, the results depend@nd the The Egs.(5), (7), and(11) determine the evolution of vortex
appropriate choice of allows the computations to proceed sheet between stratified fluids. Note that ELf) is actually
to much longer time. The issue of choosing the numericahln integro-differential equation foy, sinceU is coupled to
parameterr will be discussed later. v by Eq. (7).

The interface is described by a parametric cuwe The external acceleratiog is set to a constant for the
=Xx(s,t), with the arclengtls and timet, and is evolved by Rayleigh-Taylor instability and 0 for the Richtmyer-
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Meshkov instability. The Richtmyer-Meshkov interface is
evolved by giving the initial velocity, which in turn is the
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du?  upttoupt

a9t 2at (17

approximation of the interface state resulting from the inter-

action of an incident shock wave and the interface.

B. Numerical method

The RT-type instability develops a singularity due to the

Initially, dU/dt is updated by the forward difference,
dul/dt=(UM**—UM/At. This iteration procedure is re-
peated until convergence. In our computations, six iterations
are needed, on average, to achieve convergence for given
tolerance 108. Note that, for the integration of time step-

roll-up around the spike and this produces a difficulty inpning the trapezoidal method is applied for the interface and
numerical computations. To overcome this, we apply a desingyjer's method for the vortex sheet strength.

gularization parametef>0 to Eq.(7) [23]. The “§ equa-
tions” for Eq. (7) are

1 (2= sinh(y—Yy ~ o~
1 S hy—y) _ S ds (12
4mJo cosiy—Yy)—cogx—Xx)+ &

u=

1 (2« sin(x—X) -

v=——— = = ds.
4mJo coshy—Yy)—cogx—Xx)+ 527’

13

In the computation of Eq(1l), we apply central differ-
ences fors,dy/ds and dU/ 9s. However, the discretization of
the term iny? in Eq. (11) should be carefully taken. As time
proceeds, the vortex sheet strength develops a complicated
structure and becomes very steep around the center of roll up
at the spike. This shocklike behavior of vortex sheet strength
is due to the term in/?, because this term makes Eal) a
type of Burgers equation. Discretizations based on central
difference forgy?/ 9s are numerically unstable and the com-
putations stop when the profile becomes steep.

To solve the system of equations numerically, we discretize The similarity of Eq.(11) to Burgers equation suggests

the interface{x;}|' , and the vortex sheet strengfh;} ,
where N is the number of point vortices. Givefx;} and
{v}, the velocity field can be evaluated from E¢g), (12),

and (13). Applying direct summations for the integral, Egs.

(12) and(13) are approximated by

u:_i r sinhly; —y;)
' 4m {7 Jcosf(yi—yj)—cos{xi—xj)Jr52’
(14)
1 Sin(X; —X;
0 n(x; —X;) (15

4w jcosf(yi—yj)—cos(xi—xj)Jr52'
Here,I'; represents the local circulation, defined as
Ii=v As, (16)

whereAs; is the segment of arclength,

A= 5V(Xii1—Xi— )2+ (Yie1— Vi)

the use of the upwind methd@6] for the termy?. Here, we
apply the Godunov method, which is the simplest upwind
method. The Godunov method approximates the térm
= — 2 at the midpoints between vortices by

Fi+l/2: ma){(,y:r)Z, ('}/ijrl)z]! (18)

where

y'=max—v,0), y =min(-y,0). (19

This formulation based on the upwind difference provides
stable computations for E¢L1), so that it runs much longer
time than methods based on central differences. Note that the
upwind method was first applied to the computation of vor-
tex sheet by Zufirid8].

It has been found that point vortices on the interface tend
to migrate away from the spike region toward the bubble, so
that the spike is poorly resolved at late times. In our compu-
tations, the nonuniform distribution of point vortices is con-
trolled by the weighting parameter in Eqg. (3). As men-
tioned earlier, the parameter indirectly determines the
distribution of vortices along the interface, without changing
the solution itself. We have found that the choice — A is
effective for our simulations and gives good resolution for

The interface position and vortex sheet strength in timehe interface. This choice ai was also used by Kef®] for

are determined by Eq$5) and(11)—(13). For time integra-

the computation of Rayleigh-Taylor instability by the method

tions of these coupled equations, we apply an iteratiorbased on vortex dipole model.
method. The numerical procedures of time integrations are

described as follows: Assuming that the discrete positjbn

the average velocity!' and the vortex sheet strengfi are
given at current time step, we first estimately;'/dt by Eq.

C. Initial conditions

To apply the described numerical algorithm to unstable
interfaces, the position and the vortex sheet strength of all

(11) with dUP~*/dt at previous time step. Then, we update vortex points should be given initially. In this paper, we fo-

n+1

vi — and advance the interface by E&) with Eq. (3), by

cus on the evolutions of initial sinusoidal interface in the

suitable time stepping methods. Using the updated values f&hannel of width zr,

the interface position and vortex sheet strength, the velocity

field at next time step,Ji““, is evaluated from Eq$14) and

(15). Then, we can compute the new estimatedol'/dt by
the central difference with respect to time, i.e.,

Z=a,C0gX). (20)

For the Rayleigh-Taylor instability,y;=0 for all vortex
points, assuming that the initial velocity of the interface is 0.
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FIG. 1. Evolutions of RT insta-
bility. Atwood numbers arda) A
of ™\ _ ] =0.05, (b) A=0.3, (c) A=0.7.
Times are(@) t=0, 10, 14, 18, 22,
(b)t=0, 5,6, 7,8,c)t=0, 2, 3,

4,5,
-5
(b)
5
o] \/
-5
(©

For the Richtmyer-Meshkov instability, the initial condi- For infinite density ratio case, we ust=0, because the
tion for vortex sheet strength can be obtained from the theinterface ofA=1 has a smooth profile without roll-up and a
oretical model. We take the velocity potential ansatz regularization is not needed.

¢1=1o€YCOSX, = —wvpe Ycosx (21 Il. RESULTS FOR RAYLEIGH-TAYLOR INSTABILITY

We apply the described numerical algorithm of the vortex
method and perform numerical experiments for the nonlinear
evolutions of Rayleigh-Taylor instability. For all computa-
tions, the gravitational acceleration is setge-1 and the
number of vortex point&=400.

All results in this section are plotted in dimensionless
units. The dimensionless length, time, and velocity are given

for lower and upper fluid, respectively. The velocity potential
ansatz(21) comes from the Richtmyer impulsive modée]
and is typically used in the modeling of RM instability
[24,27. From this velocity potential ansatz, the initial con-
dition for local circulations in RM instability is given by

I'i==vo(Xi+ 1= Xj-1)sinx; coshy; . (220 py kx, tykg, andUyk/g, respectively, wherg=27/L is
the wave number and is the channel width.
The vortex sheet strengths are determined from(E@). Figure 1 illustrates the results for evolutions of RT un-

The initial velocity along vortex points is given by Egs. stable interfaces for chosen Atwood numbéys;0.05, 0.3,
(14) and(15). If the paramete® is 0, vy in Eq. (22) defines  and 0.7(density ratios 1:1.105, 1:1.857, and 1:5.667, respec-
the initial velocity of the RM bubble and spike. In our com- tively). The initial amplitude of perturbed interface &,
putations,5>0 is used for finite density ratio cases, so that=0.5. The computational time steps ak¢=0.002 for A
the initial velocity of the bubble and spike is smaller thgpn =~ =0.05, andAt=0.001 forA=0.3 and 0.7. The regulariza-
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4
of ~—— — \/
FIG. 2. Evolution of RT insta-
-4 bility for A=1. Times aré=0, 2,
3, 4, and 5.
-8
=12

tion parameter is set t6=0.15. We see from Fig. 1 that the Figure 3 shows that the numerical results for the bubble ve-
spike has stronger roll-up for smaller Atwood number andocity agree well with the analytic solutiof23).
the difference of amplitudes of the bubble and spike at late To show the dependence of the regularization parameter
times becomes large as the Atwood number increases. 5, we compare the results for various valuessofFigure 4
The result for the case of infinite density rat®=1, is  shows the bubble and spike velocities 0.1, 0.15, and
displayed in Fig. 2. The regularization parameter is sef to (.2 for the system oA=0.3. Figure 4 shows that the veloc-
=0, for _the reason mentioned prev_iously. The initial ampli-ity field grows slightly faster for smaller value af, but
tude of interface i|y=0.5 and the time stept=0.001. converges to quantitatively similar values. The computations
Figure .3 plots the bubble and splke velocities _for the reyyith 5=0.1 are stopped arourie- 7.3 due to lack of resolu-
s_ults of Figs. 1 and 2'. For comparisons, theoretical preq'cﬁon. Figure 5 is the comparison of RT unstable interfaces of
o e SePolc Dbl velocty o 12 POSA=0.3 or1-0.1,0.15, and 0.2 at tme- 7. W see tht
[21] has recently generalized Lay)//zer’s potential flow modelthe rgsoluuon of the spike is refmgd ﬁsdecrgases and the
[28], originally for infinite density ratio, to the system of amplitudes of the bubble and spike are slightly larger for
arbitrary density ratio and obtained the analytic solution forsmaller value ofé.

the asymptotic velocity and curvature of the RT bubble, Figure _6 i_s f[he bubb_le curvatures fér=0.05, O.'3’ 0.7,
and 1.0 with initial amplitudesay=0.3 and 0.5. In Fig. 6, the

sign of the bubble curvature is changed for plot. The bubble

S [ Ag £ |_)E 23 curvatures converge to values between 0.5 and 0.55, forget-
bb (2+A)k 'SP 3¢ ting initial amplitudes. The asymptotic bubble curvatures for
0.3 T T 1
0.8
0.2t Ve 1 I
) - Y 206 e
R e L g |
= g0.4- Voo
R A e 7
| 0.2f b
A=0.05 i A=0.3 ] FIG. 3. Bubble and spike ve-
0 o , , , locities of RT instability for A
0 5 1 15 20 ° 2 4 6 8 =0.05, 0.3, 0.7, and 1.0. The
Time Time .
solid curves are results from the
5 5 vortex method and the dashed
' lines are theoretical predictions
14 9 A A=1.0 v | for asymptotic bubble velocity
12 _\/Sp P from the potential flow model.
= 1 ‘?3.
Sos g
g >,
0.6 Vbb
0.4r ]
Y
02 A=07 {  b---- < bo
% 1 2 3 4 5 % 1 2 3 4 5
Time Time
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1 5
0.8r
0
.06} - Ve
£ ==
ke
[
> oaf S
\ -5
bb
(a) (b) {0)
0.2f ]
FIG. 5. Comparison of evolutions of RT unstable interfaces for
various values of regularization parameteat timet=7. The At-

0 2 _:1 6 8 wood number isA=0.3 and the number of vortex points I¢
Time =400. () 6=0.1, (b) 6=0.15, (c) 6=0.2.
FIG. 4. Comparison of bubble and spike velocities of RT insta- . . . ) ,
bility for various values of regularization parameterThe Atwood ~ INg @ potential with singularity. Note that Layzer's model
number isA=0.3. The dashed curve corresponds&e0.1, the  USes an analytic potential. The asymptotic solution for the RT

solid curve tos=0.15, and the dotted curve ®=0.2. bubble in Zufiria’s model is
A=0.3 and 0.7 are larger than that fA=0.05 andA=1. /9 K

) ) . .96 P —, 24
Therefore, it seems that the asymptotic bubble curvature is voo—0-963y/ 3 | ool — V3 49

not monotonic with respect to the Atwood number.

The theoretical predictiofi23) from the Layzer-type po- which is given by Sohn and Zhahg9]. The solution(24) is
tential flow model gives 1/3 for the asymptotic bubble cur-valid only for A=1 and Zufiria’s model still has not been
vature in this case, which has a range of difference from 34%xtended to general<1. The solution(24) predicts 0.577
to 40% with the numerical results. The reason for this relafor the asymptotic bubble curvature in this case, which has
tively large difference is that the analytic solutig@3) is  about 15% difference with the numerical result #ae=1.
derived from the approximate modeling and the curvature i§he prediction for the asymptotic bubble velocity from Eg.
a much more sensitive parameter than the velocity. The prg24) has little difference with that from Layzer’s model or
dictions from the theoretical model can be improved by pro-numerical results.
viding more appropriate form of potential to the model. Figure 7 is the distribution of vortex sheet strengths along
Zufiria [29] proposed a different potential flow model, apply- the RT interfaces for the results of Figs. 1 and 2 at selected

1 T T T T 1

Bubble Curvature
Bubble Curvature

0 : ‘ : : % 2 P 5 3 FIG. 6. Bubble curvatures of
(a) Time (b) Time RT instability with initial ampli-
tudes a;=0.3 and 0.5. Atwood
1 1 numbers are(a) A=0.05, (b) A

- 1 - 1 =0.3,(c) A=0.7, (d) A=1.

0.5

Bubble Curvature
T a T T
o
“u
o
¢ o
Bubble Curvature
°l\)
n
[=]
5]

A=0.7 ] | A=1.0

0 1 2 3 4 5 0 1 2 3 4 5
(c) Time (d) Time
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A=0.05

FIG. 7. Distributions of vortex
sheet strengths along RT inter-
faces. Atwood numbers ar@ A
f————————— =0.05, (h) A=0.3, (c) A=0.7,
(d) A=1.

0o 0z 04 08 08 1 0o o0z 08 1
(a) Normalized Arclength (b)

Vortex Sheet Strength
Vortex Sheet Strength

0 0.2 0.4 0.6 0.8 1 -8

(c) Norm'alized Arclength (d) 0 0.2 04 06 08 !

Normalized Arcléngth

times. Thex axis represents the normalized arclength. We The result for the case of infinite density ratid=1, is
observe that the vortex sheet strength tends to be narrodisplayed in Fig. 9. The regularization parameter is sef to
around the time of formation of spike and has more compli-=0. The initial amplitude of the interface &=0.5 cm and
cated structure at late times for smaller value of Atwoodthe initial interface velocity is 0.8 cm/ms, directly setting
number. The vortex sheet strength fAe=0.05 is almost 1;,=0.8 cm/ms in Eq(22). The computational time step is
symmetric with respect to vortex peaks, due to weak densityaken asAt=0.0005 ms.
stratification of the system. Note that the vortex sheet We validate the present method by comparing our results
strength for the system &= 0 is symmetric with respect to with other numerical results. Figure 10 shows the compari-
vortex peaks7]. Figure 7d) shows that the vortex sheet son of results from the vortex method for bubble and spike
strength forA=1 becomes single shocklike profile at late velocities with the results obtained by Menikoff and Zemach
times. [5]. Menikoff and Zemach applied the method of conformal
mapping for the RT instability and, to extend the model to
the RM instability, seg=0 and gave nonzero initial velocity
for the interface, which is the same approach as given in this
In this section, we present the numerical results forpaper. In both results, the same initial conditiomgs 0 (flat
Richtmyer-Meshkov instability from the vortex method. The interfacg andvy=0.5 cm/ms, are used. The solid curves are
number of vortex points is set td=400 for all computa- the results from the vortex method and the circles from the
tions, except results for finer vortices in Fig. 10. method of conformal mapping in Ref5]. We performed
For RM instability, we choose units typically used in simulations using finer vorticey= 200, 400, and 800. We
shock-tube experimen{80]. The units can be rescaled by see the convergence of our results to the spike velocity ob-
U—s51U, X=X, t—(S,/s9)t. tained by the conformal mapping and perfect agreements for
Figure 8 illustrates the results for evolutions of RM un- the bubble velocity. The results from the vortex method for
stable interfaces for finite density ratio cases. We choose thiae bubble velocity are identical for all cases. Note that the
Atwood numbersA=0, 0.3, and 0.7. The initial amplitude comparison of results for the RT instability from the point
is ap=0.5 cm and the initial velocity of the bubble and spike vortex method and the method of conformal mapping is
is 0.8 cm/ms, by setting,=1 cm/ms in Eq.(22) and §  given in Bakeret al. [4].
=0.15. The computational time steps de=0.001 ms for The bubble and spike velocities for the results of Figs. 8
all cases. Figure 8 shows that, similarly as the RT instabilityand 9 are plotted in Fig. 11. The velocities of bubbles and
the RM interface has stronger roll-up for smaller Atwood spikes decay to zero for all cases, except the spiké of
number. We also observe that, for smaller Atwood number=1. For smaller Atwood number, the growth rate of the
the amplitude of the RM bubble is larger at later times andoubble is larger, while that of the spike is smaller. The
that of the RM spike is smaller. dashed curves in Fig. 1@ are theoretical predictions for

IV. RESULTS FOR RICHTMYER-MESHKOV INSTABILITY
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FIG. 8. Evolutions of RM in-
stability. Atwood numbers aréa)
0\/ A=0, (b) A=0.3, (c) A=0.7.
The initial interface velocity is 0.8
cm/ms. Times aré=0, 2, 4, 5.5,
and 7 ms for each case. The do-

main is[0,27] X[ —5,5] cn?.

-5

-5
(c)

asymptotic growth rates of bubbles from the Layzer-type po411(b) is the theoretical prediction for the asymptotic spike

tential flow model[21]. The asymptotic solution for the RM velocity for A=1 from the Layzer model, which is obtained

bubble in Ref[21] is by Zhang[18]. The asymptotic solution for the RM spike of
A=1 in Zhang[18] is

1/2

3&0+3
o L o, (26)

3¢+ 1

k
Vob™ (25 AVKt’ | €06l — 3 (25

VSp_> Vo

For all cases, the numerical results for the bubble velocity fit
well with the theoretical prediction. The dashed line in Fig.where £,=£(t=0). Figure 11b) shows that the numerical

5

FIG. 9. Evolution of RM insta-

bility for A=1. The initial inter-
0 \/ face velocity is 0.8 cm/ms. Times

aret=0, 1, 2, 3, and 4 ms. The
domain is[0,27] X[ —5,5] cn?.

-5
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1 ' ' i curvature in Zufiria’'s model is consistent with the numerical
results. The solution(27) gives 0.383 cm® for the
asymptotic bubble curvature in our case, which has about
15% difference with the numerical result f&r=1 and is in

g better agreement with the numerical result than Layzer’s
g model. The prediction for the asymptotic bubble velocity
208 from the solution(27) is slightly lower than that from

% Layzer’'s model and also fits better with the numerical result.
> Figure 13 plots the vortex sheet strengths along the RM

interfaces for the results of Figs. 8 and 9 at selected times.

The vortex sheet strength of the RM unstable interface for

A=0 is symmetric with respect to vortex peaks and is con-

0 i 2 3 4 centrated at midpoints of the bubble and spike. The structure
Time (ms) of vortex sheet strength for the RM interface A0 is

FIG. 10. Comparison of present results with other numericalm_uch simpler than that of weakly stratified RT instability in

results forA=1. The solid curves are results from the vortex Fig. 7(a). The single_ ShOCk“ke '{’eha"ior of vortex sheet
method withN=200, 400, and 800. The circles correspond to re- strength forA=1 in Fig. 13d) is similar to the RT case of

sults from the method of conformal mapping in R, The initial ~ A=1 in Fig. 7d). However, the peak of vortex sheet
conditions area,=0 (flat interface and v,=0.5 cm/ms. strength for the RM instability oA=1 does not increase

with respect to time, unlike the RT case A& 1.
result for the spike velocity is in good agreement with the We mentioned in Sec. | that Rikanat al. [15] used the

analytic solution. For the case of Fig. flat interfacg, the  reduced vortex model foA=0 which gave only two oppo-
solution (26) gives 0.866 cm/ms, which is in reasonable Site vortices at the middle of the bubble and spike. The con-

agreement with the numerical results. centration of the vortex sheet strength at midpoints of the
Figure 12 shows the bubble curvatures for the results opubble and spike, in Fig. 18), shows that the assumption
Figs. 8 and 9, and the results with the initial amplitumle ~ used in Ref[15] is indeed reasonable. Moreover, this behav-
=0.3 cm. The bubble curvatures converge to values betwedfr supports the agreement of the analytic solution for
0.45 and 0.5 cm?', independent of initial amplitudes. We asymptotic bubble velocity foh=0 from the reduced vortex
again do not find a monotone behavior of the asymptotidnodel[Eq. (7) in Ref. [15]] and the solution(25) from the
bubble curvature with respect to the Atwood number. It isPotential flow model.
interesting to compare the results of RM bubble curvatures
with the RT cases. For the same Atwood number, the
asymptotic curvature of the RM bubble is slightly smaller

than that of the RT bubble. We have presented the numerical simulations for RT and

The asymptotic curvaturés) for the RM bubble from gy instabilities by the vortex method. The numerical results
Layzer's model is same as that for the RT bubble and has g that the vortex method has been successfully applied to
range of difference from 27% to 34% with the numerical ihe nonlinear evolutions of unstable interfaces.

results. On the other hand, the asymptotic solution for the ¢ point vortex method used in our computations has

V. DISCUSSION AND CONCLUSIONS

RM bubble ofA=1 from Zufiria's model[19] is provided highly resolved solutions for unstable interfaces.
The regularization parametéris applied for stable compu-
. %5 | — L 27 tations and, for smaller value &, the roll up of the spike is
bb g ISP 2 61 refined. The computations with very small have serious

troubles at late times and we showed that the magnitude of
In Zufiria’s model, the RT bubble has larger asymptotic cur-has small effect on the solutions of physical variables.
vature than the RM bubble. This behavior for the bubble The dynamics of unstable interfaces have been thoroughly

1

FIG. 11. Bubble and spike ve-
locities of RM instability for At-
wood number#®\=0, 0.3, 0.7, and
1. The dashed curves {a) are the
theoretical predictions for the
asymptotic growth rate of bubbles
for A=0, 0.3, 0.7, and 1 from
above to below. The dashed line in
(b) is the theoretical prediction for
the asymptotic spike velocity of
0 : . : , . : 0 : : : y ' : A=1.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
(a) Time (ms) (b) Time (ms)

[N

A=1.0

o
o

o

o
o
@

o
>

o
.Ib
Spike Velocity (cm/ms)

Bubble Velocity {cm/ms)

0.2r
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Bubble Curvature (cm‘1)
0 o
7ﬁ
=4 o
w 4]

Bubble Curvature (cm'1)
o
&

0 0 - FIG. 12. Bubble curvatures of
(a) Time (ms) (b) Time (ms) RM instability with initial ampli-
tudesay=0.3 and 0.5 cm. Atwood
1 1 numbers are(a) A=0, (b) A

1 1 =0.3,(c) A=0.7, (d) A=1.

80=0.5

a.=0.3

Bubble Curvature (cm")
&

Bubble Curvature (cm‘1)
o
o

A=0.7 | A=1.0

o 1 2 3 4 5 & 7 0 1 2 3 4
(c) Time (ms) (d) Time (ms)

investigated by the vortex method. The results for bubble andeometric parameters. In the RM instability, the bubble and
spike velocities quantitatively agree with the analytic solu-spike have decaying growth rates, except that the spike of
tions of potential flow models. The RT bubble attains a con-A=1 converges to a constant asymptotic velocity. Fixing
stant asymptotic velocity, which is proportional to the At- physical parameters, the growth rate of the RM bubble is
wood number for fixed gravitational acceleration andlarger for smaller Atwood number, while that of the RM

2]

IS

N

]
N

Vortex Sheet Strength (cm/ms)
o

B oz o4 08 08 o 02 0.4 06 038 1 FIG. 13. Distributions of vor-
(a) Normalized Arclength (b) Normalized Arclength tex sheet strengths along RM in-
terfaces. Atwood numbers afe)
5 — 1 3 — A=0, (b) A=0.3, (c) A=0.7, (d)
1 A=1.

N

o

Vortex Sheet Strength (cm/ms)

Vortex Sheet Strength (cm/ms)
o
o

A=0.7 A=1.0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) Normalized Arclength Normalized Arclength

a
e

036703-10



VORTEX MODEL AND SIMULATIONS FOR RAYLEIGH-. .. PHYSICAL REVIEW E 69, 036703 (2004

spike is smaller. instability, the vortex sheet strength has more complex struc-
The RT and RM bubbles have constant asymptotic curvatures as the Atwood number decreases. For the RM instabil-
tures, independent of initial amplitudes. We have found thatity of A=0, the concentration of vortex strength on the
for the same Atwood number, the RT bubble has slightlymiddle of the bubble and spike indicates that the reduced
larger asymptotic curvature than the RM bubble. Itmodeling, imposing only two vortices of different sign, is a
seems that, for both RT and RM instabilities, the asymptotiGeasonable approximation to the full model. The vortex sheet
bubble curvature is not monotonic with respect to thestrength for the RM interface oA=1 becomes a single
Atwood number. shocklike profile, but the peak of vortex strength does not
The studies on bubble curvatures have raised the issue fgirow at late times.
validity of theoretical models. The predictions for asymptotic  The vortex simulation for the turbulent mixing by initial
bubble curvatures, as well as asymptotic bubble velocitiesjyltimode interactions is an interesting subject. For compu-
from Zufiria’s potential flow model agree better with the nu- tations of fully developed or strongly interacting interfaces,
merical results than Layzer's model. The quantitative differ-the Jack of resolution from nonuniform distribution of vortex
ences between two models for predictions for solutions comgoints causes a serious loss of accuracy. Therefore, it should
from the choice of potential function in the models. The pe handled by auxiliary procedures such as a redistribution
Layzer model uses a sinusoidal form of potential and theyr point insertion method. The application of the vortex
Zufiria model has more sophisticated potential which is demethod with a redistribution and/or point insertion procedure
rived from complex conformal mapping. Therefore, one mayto fully developed interfaces and simulations of turbulent

conclude that the Zufiria model is more appropriate for unmixings of RT and RM instabilities are under the current
stable interfaces than the Layzer model. The advantage @fsearch.

Layzer's model is in the simple form of potential, so that it
has been generalized to the system of arbitrary density ratio

in _se\_/e_ral ways. The_ Zufiria_l model is_ still limited to the case ACKNOWLEDGMENT
of infinite density ratio and its extension to general cases has
not been established yet. This work was supportd by Grant No. R01-2000-00002

The numerical results show that the vortex sheet strengthisom the Basic Research Program of the Korea Science and
of RT and RM interfaces have different behaviors. In the RTEngineering Foundation.
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